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The linear stability of filaments or strips of ‘potential’ vorticity in a background 
shear flow is investigated for a class of two-dimensional, inviscid, non-divergent 
models having a linear inversion relation between stream function and potential 
vorticity. In  general, the potential vorticity is not simply the Laplacian of the stream 
function - the case which has received the greatest attention historically. More 
general inversion relationships between stream function and potential vorticity are 
geophysically motivated and give an impression of how certain classic results, such 
as the stability of strips of vorticity, hold under more general circumstances. 

In all models, a strip of potential vorticity is unstable in the absence of a 
background shear flow. Imposing a shear flow that reverses the total shear across the 
strip, however, brings about stability, independent of the Green-function inversion 
operator that links the stream function to the potential vorticity. But, if the Green- 
function inversion operator has a sufficiently short interaction range, the strip can 
also be stabilized by shear having the same sense as the shear of the strip. Such 
stabilization by ‘ co-operative ’ shear does not occur when the inversion operator is 
the inverse Laplacian. Nonlinear calculations presented show that there is only slight 
disruption to the strip for substantially less adverse shear than necessary for linear 
stability, while for co-operative shear, there is major disruption to the strip. It is 
significant that the potential vorticity of the imposed flow necessary to create shear 
of a given value increases dramatically as the interaction range of the inversion 
operator decreases, making shear stabilization increasingly less likely. This implies 
an increased propensity for filaments to ‘roll-up’ into small vortices as the 
interaction range decreases, a finding consistent with many numerical calculations 
performed using the quasi-geostrophic model. 

1. Introduction 
In recent years the ‘potential vorticity’ of balanced motion has increasingly been 

used to diagnose, understand and model the dynamics of the atmosphere, the oceans, 
and other stably stratified fluid systems (e.g. Hoskins, McIntyre & Robertson 1985; 
Kurganskiy & Tatarskaya 1987 ; McIntyre & Norton 1991). It provides a hierarchy 
of dynamical models all governed by the advection of a quantity ‘potential 
vorticity ’, hereinafter ‘PV ’, that is (a )  materially conserved in the absence of heating 
and friction, and (b)  whose instantaneous configuration determines all other 
quantities in the system at that instant (‘PV invertibility’). The simplest model in 
this hierarchy is two-dimensional incompressible vortex dynamics, hereinafter ‘ 2VD ’ 
(the PV being identified as the ordinary vorticity), and the next is quasi-geostrophic 
shallow-water dynamics (‘QGSW’). Both of these models idealize the motion of a 
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single layer of a real stratified flow. More realistic models include the quasi- 
geostrophic multi-layer models (‘QGML’), which like 2VD and QGSW have an 
inversion operator (giving the velocity in terms of the PV) that is linear. Further 
models in the hierarchy, such as the semi-geostrophic shallow-water and multi-layer 
models, use more accurate, nonlinear operators. 

In  the present state of knowledge, there is a need to learn more about how far the 
analogies between different models in the hierarchy can be carried, and where on the 
other hand the differences between them are significant. This question can be studied 
within the set of models having Green-function integral inversion operators that link 
the stream function to the potential vorticity, as well as a two-dimensional, non- 
divergent velocity field. These models exemplify some of the differences of interest, 
particularly those relating to the interaction range of the inversion operator, and in 
addition all these models possess standard Hamiltonian structure. (An elementary 
proof is to replace the inverse Laplacian by the Green-function inversion operator in 
the derivation given by McIntyre & Shepherd 1987, $7 . )  In 2VD the Green function 
is logarithmic in the vortex separation r ,  which represents a relatively long 
interaction range. At the opposite extreme, the Green function in QGSW represents 
a relatively short interaction range. It has an exponential tail, scaling with the 
Rossby length L,, the lengthscale based on the Coriolis parameter fo and the gravity 
wave speed. In the limit of continuous stratification QGML has a (three-dimensional) 
Green function that behaves like 1/r for large r .  

Insight into the sensitivity of two-dimensional vortex motion to the form of the 
Green function of the flow will give us a better understanding of what aspects of 
single-layer models may be sufficiently robust to carry over to the real atmosphere 
and oceans. At present, single-layer models are the only ones that offer sufficient 
spatial resolution to come anywhere near adequately simulating the full dynamic 
range of the horizontal motion. This paper is part of a general study of how sensitive 
two-dimensional vortex interactions, much of whose phenomenology is familiar in 
the case of 2VD, are to the form of the Green function. 

One of the most ubiquitous features of high-Reynolds-number two-dimensional or 
layerwise-two-dimensional flows is the presence of strips or filaments of PV. Strips 
of P V  are formed in stratospheric models, see for instance the 2VD model of Juckes 
& McIntyre (1987), and their robustness is a critical issue. Thin strips of vorticity are 
also ubiquitous in numerical experiments of nonlinear 2VD flows a t  high Reynolds 
numbers (see for example Benzi, Patarnello & Santangello 1987 ; Dritschel 1988, 
1989a; Legras, Santangello & Benzi 1988; Melander, McWilliams & Zabusky 1987; 
and Melander, Zabusky & McWilliams 1988), in laboratory experiments of two- 
dimensional flows (Couder & Basdevant 1986; Griffiths & Hopfinger 1987), as well as 
in stably stratified three-dimensional flows (Hedstrom & Armi 1988). These strips 
seldom roll up into strings of miniature vortices as the classic analysis of Rayleigh 
(1894) might lead one to believe. The explanation for the persistence of these strips 
is the stabilizing effect of the large-scale strain field associated with coherent vortices 
(Dhanak 1981 ; Dritschel 19893; Dritschel et al. 1991). In the vicinity of intense 
coherent vortices, where most of the filamentary vorticity is produced via 
interactions with other vortices, the differential rotation causes the filaments to 
rapidly align with the circulating flow, and then shear is the prime factor affecting 
stability (Dritschel 1989b ; hereinafter referred to as D). In  this paper, we re-examine 
the stability of filaments in shear, widening the scope to models with arbitrary Green 
functions G(r) .  

In  the next section, the stability of a straight strip of uniform PV with imposed 
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background shear, that also has uniform PV, is derived for arbitrary G(r) .  In  all 
models in which the velocity due to the strip is finite, it is shown that the strip can 
be stabilized by imposed shear that reverses the total shear across the strip, as in 
2VD. If, additionally, G(r)  decays fast enough, the strip can also be stabilized by 
shear having the same sense as the shear of the strip - this does not occur in 2VD. 
The stability of thin circular strips is also examined, since in reality the strips whose 
stability is in question encircle intense coherent vortices; however, the effects of 
curvature are found to be truly insignificant for thin strips, as found in the 2VD 
model (see D). Results for specific models are given in the following sections; in $3 
the established results for 2VD are rederived from the general formula developed in 
$2, in $ 4  new results are derived for the QGSW model, and in $5 new results are 
derived for a class of models having a Green function characterized by algebraic 
decay at  large separations. Inter-model comparisons highlight important similarities, 
differences and trends. Section 6 connects shear stabilization to generalized forms of 
Amol’d’s stability theorems (Arnol’d 1965, 1966). Nonlinearity is considered for the 
first time in $7. The evolution of disturbed strips in both the 2VD and QGSW models 
is calculated with a contour-dynamics model. A number of significant differences 
between linear and nonlinear evolution are observed even at small disturbance 
amplitude, indicating enhanced stability for strips in adverse shear and lack of 
stability for strips in co-operative shear. 

2. Stability of a strip of potential vorticity 
In this section we present general conditions and results for the linear stability of 

a straight strip of PV in a background shear flow. For a region of constant potential 
vorticity q embedded in an irrotational flow, the velocity field is determined by the 
contour integral 

u ( x )  = -q  G(r )  dx’, (1) fw 
where G(r)  is the Green function of the model, V is the boundary of the region and 
r = Ix-x’l (Dritschel 1989~) .  

We first consider the equilibrium configuration defined as a region of uniform 
potential vorticity q bounded by the two lines y = &#A, beyond which the flow is 
irrotational. The flow due to the equilibrium configuration may be written as ii = 
( ~ ( y ) ,  0) where 

~ ( y )  = q r  {G([x2+(y-~A)2]~)-G([x2+(y+#A)2]~)}dx, (2) 
--OD 

i.e. the flow is parallel to the axis of the strip and independent of the position along 
the strip. 

Linear stability is determined by adding small, normal-mode boundary dis- 
turbances of the form 

(3) 

to the upper and lower edges of the strip and linearizing the equations of motion 
Dx/Dt = u(x) about x = x* = (x, &+A).  This is all that is necessary, since equation 
( 1 )  for x on V is a complete dynamical description for the flow. It is true that more 
general rotational (q-varying) disturbances have been omitted, but within linear 

q*(x ,  t) = Re [ij* exp (ikz-id)] (k > 0) 
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theory such disturbances would simply be passively advected. By direct mani- 
pulation we obtain two coupled equations in the complex amplitudes q* ,  

[6- k(Y1 -Yo)] q+ + kYz q- = 0, 
[6+k(Y1-Yo)]q--kY2q+ = 0, 

where 6 = m/q is the dimensionless complex growth rate of the disturbance, 

Yo(d) = 2 [C(z)-G((z2+d2)~)]dz,  1: 
and Yz(k,d) = 2 G((z2+d2)~)coskzdz. lm 
Note that ti* = + q Y 0  is the undisturbed velocity on the upper and lower edge of the 
strip, respectively. For the coupled equations (4) to have a non-trivial solution the 
eigenvalue 6 is required to take the value 

(9 = ~ k [ ( 4 - Y 0 ) z - Y ; ] ~ .  (6) 

We now consider the effect of adding a background shear flow that has uniform PV 
to the above configuration. This shear flow can be considered to be the flow due to 
a strip of uniform potential vorticity Q, say, with width much greater than any other 
lengthscale involved in the flow, and hence the flow has the same y-dependence as the 
flow inside the undisturbed strip, cf. equation (2). The above equilibrium flow is then 
augmented by this shear flow. In particular, the equilibrium velocities at the edges 
of the strip now assume the values a* = f qYo( 1 - A ) ,  where A is a dimensionless 
shear parameter proportional to - Q / q ,  Positive A corresponds to adverse shear as 
the background flow is opposing the flow due to the strip, while negative A 
corresponds to co-operative shear. 

It is important to note that the relationship between the dimensionless shear A 
and the ratio of background to strip vorticity Q / q  depends strongly on the Green 
function, and therefore a particular value of A will not correspond to the same value 
of Q / q  for all Green functions. 

The linear stability for the strip with background shear is obtained in precisely the 
same fashion as above. The resulting coupled equations and dispersion relation are 
the same as (4) and (6) with Yo replaced by Yo(l - A ) ,  i.e. the complex growth rate 
is given by 

6 = f k[(Yl -Yo(l - A ) ) 2 - Y  3;. (7)  
To simplify the following analysis we assume that the Green function G ( r )  is such 

that 

(8) I (i)G(r)+-co as r+O, 

(ii) G ( r )  > 0, G ( r )  < 0,  

and (iii) Yo, Yl, and Yz are finite. 

Condition (iii) is applied so that there are no infinite terms in the dispersion relation 

The condition that Yo, and that therefore the basic velocity on the edges of the 
(7). 

strip, be finite implies that 
rG(r)+O as r+O, (9) 
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see Appendix A. In the remainder of this analysis we assume that G(r)  satisfies (9). 
The strip will be linearly stable to all disturbances of the form (3) if the growth rate 

has no imaginary part, i.e. if the quantity under the radical in the dispersion relation 
(7) is positive for all k. As 9o < 0 and j1 < 92 < 0 for any G(r)  satisfying (8), we have 
from (7) that the strip will be stable when 

A 2 1, (104  

or when 

It is shown in Appendix A that the critical shear A ,  is finite if 

rG(r)+O as r + m ,  

and then 

Therefore in all models with a Green function less singular than l / r  the strip may 
be stabilized by adverse shear (condition (lOa)), while if the Green function also 
decays faster than l / r  for large r the strip may be also stabilized by co-operative 
shear (condition (lob)). 

The above instabilities are caused by the same mechanism as that responsible for 
barotropic and baroclinic instabilities (see $6 of Hoskins et al. 1985). The flow 
associated with the waves on each edge of the strip causes the waves to propagate 
against the basic flow associated with the undisturbed strip. For particular phase 
relationships between the waves on the edges, phase locking can occur and the waves 
amplify (see Dritschel & Polvani 1991, $ 5 ,  for a simple heuristic argument). 
Stabilization by adverse shear corresponds to the reversal of the direction of the basic 
flow on the two edges of the strip, making it impossible for the phase propagation to 
keep the waves stationary - a necessary condition for instability by the symmetry 
of the problem. As the stabilizing adverse shear is approached and the basic flow 
weakens, only short waves can phase-lock and amplify. In the case of co-operative 
shear, the magnitude of the basic flow is augmented by the shear (in fact +T 00 

as A + -  co). If the Green function satisfies both conditions (9) and (ll),  there exists 
a maximum phase speed with which waves can propagate relative to the basic flow 
and therefore a value of co-operative shear A ,  less than that for which the basic flow 
outruns the phase propagation of all waves. Hence stabilization by co-operative 
shear occurs when the wave-induced velocity field is too weak to hold the waves 
stationary against the basic flow. 

To determine the dependence of the above results on the vorticity distribution, 
they have been extended to non-uniform vorticity distributions. If we consider, as an 
approximation of a continuous PV distribution, a cross-strip distribution consisting 
of m discrete steps in PV, the set of coupled equations for the disturbance amplitude 
at  each interface can be determined by linear superposition of the results for a single 
strip of uniform PV. The resulting eigenvalue problem can be solved to determine the 
2m eigenvalues u corresponding to the phase speeds and growth rates of 2m distinct 
modes. See D, $3, for details of the stability of a strip with non-uniform vorticity, in 
2VD. 

Circular strips are considered next, in part because strips take on a progressively 
more circular shape when wound around intense coherent vortices (which also 
provide a source of stabilizing shear), and in part because there is a surprisingly close 
connection between the stability of circular and straight strips. By a judicious choice 
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of geometrical correspondence, we show below that the circular and straight strip 
stability results can be brought into numerically close correspondence except for 
unusually wide circular strips (improving even on the 2VD results of Zakharov 1977 
and D). 

We suppose in the following that the strip has a negligible effect on the enclosed 
vortex. This allows one to replace the enclosed vortex by a point vortex of the same 
circulation (see D for justification). We consider a circular strip of constant potential 
vorticity q,  bounded inside by the circle r = a and outside by the concentric circle 
r = b, with a point vortex of circulation r a t  the origin. Situating the point vortex a t  
the origin adds a potentially stabilizing shear flow to the circular strip. From ( l ) ,  we 
have that the velocity due to the circular strip is wholly azimuthal, ii = c8k8, and the 
angular velocity is 

Q,(d = q(F(a, d - F ( b ,  r ) )  = ps(r) ,  (13) 

where G ( ( r ~ + r ~ - 2 r , r 2 c o s $ ) ~ ) c o s $ d $ .  

The linear stability of small radial boundary disturbances 

v , ( O , t )  = Re[q+exp(imO-icrt)] (m = 1,2 ,  ...) 

to the outer and inner interface is again found from the linearized velocity and 
kinematic condition a t  each vorticity interface. The growth rates are obtained by 
solving the eigenvalue problem 

where Xab = T m ( a ,  b )  and 

G((rf + ri - 2r1 r2 cos $$) cos mq5 d$. 

To enable the closest possible comparison of the stability results with those of the 
straight strip, we want the inner and outer edges of the circular strip to be rotating 
at an equal but opposite rate, and the velocity difference across the strip to be equal 
to that in the straight case. This is achieved by requiring 

( 1 7 a )  Q(b )  = -Q(u) = 52, 

with 

(where a+ is the velocity on the upper edge of the straight strip, A = b - a  and Yo is 
defined by ( 5 a ) )  and then by altering the basic flow slightly to include a uniform 
background potential vorticity Sq and a modified point vortex strength Sr. The 
values of Sq and ST are determined in Appendix B. 

Note that the dimensionless shear parameter A appearing in (17 b )  for d equals 

where f ( a ,  b)  depends on the Green function. In  2VD, A = r/qxa2,  which is the ratio 
of the point-vortex circulation to the circulation of a disc of radius a and PV value 
q .  
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From the eigenvalue problem (15), we have that the dimensionless growth rate 
5 = cr/q is given by 

(19) 
Instability requires a non-zero imaginary part to 5 so the quantity under the radical 
must be negative in this case. This occurs when A ,  < A < 1 ( A ,  < 0 and depends on 
the Green function). Thus, like the straight strip, the circular strip may be stabilized 
by both adverse and co-operative shear. 

In  Appendix C, it is verified that the dispersion relation for a thin circular strip, 
A = b-a < a,  reduces to that for a straight strip, upon identifying k = m / a ,  and this 
is corroborated by the quantitative results given below. 

5 = $(X,, - x,,, f [(x,, - X;,,)Z + 4(Xaa + m 8 )  (x,, + m 8 )  -axa, XJ". 

3. The classical 2VD model 
The stability of an isolated straight strip of uniform vorticity in two-dimensional 

vortex dynamics (2VD) was first studied by Rayleigh (1894). Recent extensions 
include non-uniform vorticity distributions, annular geometry and the effects of a 
central point vortex (Zakharov 1977 ; D). In this section we show that these stability 
results can be derived from the general formula given in the previous section. For 
detailed discussion of these stability results, reference should be made to the above 
studies. 

The materially conserved PV in 2VD is just the ordinary vorticity of the flow (i.e. 
q = w = V") and the Green function is 

1 
2n: 

G(r)  = -log r .  

For a straight strip of uniform vorticity w the equilibrium flow due to the strip is 
G = Ti$A above and below the strip respectively, and u = -wy inside the strip (cf. 
(2)). The background shear flow is then of the form Awy, which corresponds to adding 
uniform background vorticity Q = - Aw. From (7) we have that the complex growth 
rate 8 is given by the dispersion relation 

(cf. D, equation (6)). Note that the integrals and 9. given by ( 5 )  are infinite, but 
in deriving (4) we could have omitted at the outset the singular parts of these 
integrals by integrating (1) by parts; this exception only occurs when G(r)  does not 
decay with large r .  

We now re-examine the case of a circular strip of uniform vorticity, previously 
considered by Zakharov (1977) and D. In D, it was proven that the stability of a thin 
circular strip reduces to that of a straight strip in the limit. This itself is not so 
surprising except for the fact that the imposed shear is irrotational in one case and 
rotational in the other. Here, we intend to show that the quantitative results can be 
brought into an even closer correspondence by a judicious choice of the annular flow. 

As discussed in the previous section, to bring about the closest possible 
correspondence between the straight and circular strips, we add uniform background 
vorticity dw (equivalent to moving to a rotating frame of reference in 2VD) and 
incrementing the central point-vortex strength by 6f (see Appendices B and D for 
details). From (19), the growth rates of small disturbances on the strip are given by 

2 = f $[ 1 - k A  ( 1 - A) l2  - e-2kd}i (21) 
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FIGURE 1. Difference between maximum dimensionless growth rate for a circular and straight strip 
E = IIm d, -1m dJ versus dimensionless strip width d / a ,  for a 2VD strip with no shear A = 0 (solid 
line), adverse shear A = 0.5 (dotted line), and co-operative shear A = -0.5 (dashed line). 

where the dimensionless shear is A = f / w n a 2 .  This formula differs from Zakharov 
(1977) and D. 

I n  both the straight and circular cases, the strip is stable for all disturbances only 
when the adverse shear A is greater than or equal to unity (in agreement with the 
analysis of $ 2 ,  as the Green function (20) decays slower than 1/r and so there is no 
stabilizing co-operative shear). The formula ( 2 2 )  gives numerical values very close to 
those for the straight strip (identifying k = m/a)  even for moderately thick circular 
strips - see figure 1 which plots the difference in the maximum growth rate between 
the circular and straight cases as a function of the relative strip width A/a.  This 
result confirms that the essential mechanism controlling stability is imposed shear. 
As stated in D, it is irrelevant whether it be rotational or irrotational. 

4. The QGSW model 
We next present new results for a strip of PV in the quasi-geostrophic shallow- 

water model, and investigate the sensitivity of the above stability results to the 
interaction range of the model. In the QGSW model the PV is related to  the stream 
function by q = Vz$- yz$,  and the Green function is 

where KO is the modified Bessel function of zeroth order and y is the inverse of the 
radius of deformation L,. The radius of deformation is defined as L i  = gH/f  i, where 
g is the acceleration due to gravity, H is the depth of fluid and f o  is the Coriolis 
parameter. For small separations compared with the radius of deformation, r g L,, 
this function is the same as the 2VD Green function (20), but for large separations, 
r % L,, it falls off exponentially, G z -e-yr/(8?cyr);. 

For a straight strip of uniform potential vorticity q,  the undisturbed flow above 
and below the strip is = Tqy-l sinh ( yA/2 )  e T y y ,  respectively, and 

sinh ( Y Y )  -1  e-yA/Z Q = -qy 
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FIGURE 2. Maximum dimensionless growth rate Im 6,, wavenumber k, A of maximum instability, 
and range of unstable wavenumber (k- A ,  k ,  A )  versus dimensionless inverse radius of deformation 
yA for a strip of PV in the QGSW model. (a) Adverse shear A = 0.2, ( b )  no shear A = 0, and (c) co- 
operative shear A = -0.2. Note that k- A = 0 in ( b )  and (c). 
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Y A  
FIQURE 3. Contour plot of growth rate I m  G versus inverse of radius of deformation y A  and 

shear A ,  for a strip of PV in the QGSW model. Regions (I) and (11) are stable. 

inside. The background shear flow is then Aqy-' e-YA12 sinh (yy), corresponding to  a 
uniform background potential vorticity Q = Aq eY(D-A)'2 (D is a distance much greater 
than both the strip width A and the radius of deformation L,  - note the exponential 
dependence). From (7),  together with (23), the dispersion relation is 

where A = ( k 2  + y2)i .  
As expected from the form of the Green function (23), the equilibrium flow and the 

dispersion relation are the same as those for 2VD in the limit of large radius of 
deformation, or yd + 1. As seen in figure 2, the maximum growth rate (over 
wavenumber k), Im sm, diminishes with increasing y A  , reflecting the shortening 
interaction range of the Green function. 

From the dispersion relation (24), the strip will be stable for adverse shear 

A 2 1  

or for co-operative shear 

Ac is finite because the Green function (23) falls off quicker than 1 / r  (see §2), and the 
value of A ,  may be calculated using (12). The behaviour of Im 2, as a function of the 
two dimensionless parameters yA and A is illustrated in figure 3. Note again the 
dramatic decrease in growth rate as the radius of deformation becomes smaller than 
the strip width; growth rates remain less than 1 % of the strip's PV for L ,  < ad. 

The stability of strips with non-uniform PV is considered next. Figure 4 is a plot 
of the maximum dimensionless growth rate Im6, and the corresponding 
dimensionless wavenumber k, A as a function of A ,  for yA = 1 and for the same three 
distributions used by D (plots for different values of yd show similar behaviour). The 
general shape of the growth rate curves is similar for all three cross-strip distributions, 
with all distributions being stabilized by adverse and co-operative shear. The rough 
variation in the curves as A approaches unity is due to the competition between the 
various modes of instability having different internal structure. The wavenumber of 
maximum instability k, d also shows little dependence on the PV distribution, 
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Im +,,, 
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FIGURE 4. (a)  The maximum growth rate Im dm versus A for a strip of PV in the QGSW model with 
yA = 1 ,  for the three cross-strip profiles E = 0 (solid line), E = 0.2 (dashed line), E = 0.5 (dotted line) 
of D. ( b )  The wavenumber k, A of maximum instability versus A for the three cross-strip profiles 
in (a).  

except near A = 1 where unstable modes have short wavelengths and therefore 
strongly sense the non-uniformity in PV. As in 2VD, stability depends almost 
entirely on the peak (potential) vorticity within the strip, and relatively little on the 
precise distribution of PV. 

We now consider the stability of a thin circular strip of potential vorticity, and 
compare the results with those of a straight strip. Following the analysis of $2, we 
add a uniform background potential vorticity 8q and augment the point-vortex 
strength by 8r so that the edges of the strip rotate at the same rate but in opposite 
directions, and the velocity difference across the strip corresponds to that of the 
straight strip (see Appendices B and D for the values of 8q and 8 0 .  Unlike in 2VD, 
a uniform background PV is not the same as moving to a rotating frame of reference : 
the flow inside a large circular vortex of uniform PV is no longer rigid rotation. 
Instead, background PV sets up a variable rotation rate 

QJr) = W , ( y r ) l y r .  
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Im d, 
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-4  -3.5 - 3  -2.5 -2  -1.5 - 1  -0.5 0 0.5 1 

A 
FIGURE 5. Maximum growth rate Imd, as a function of A for a strip of PV with yd = 1 in the 

QGSW model, the two-layer model with 6 = 0.01, 0.1, 1.0, 10, 100 ,  and the 2VD model. 

Stability is determined from the dispersion relation (19), with coefficients Xm as 
in Appendix D. There are no surprises. For large radius of deformation, the 2VD 
results are recovered, and overall there is a very close correspondence between the 
circular and straight strip results. 

What is more interesting is the circulation of the point vortex required for adverse- 
shear stabilization ( A  2 1) .  From (18), the circulation of the point vortex must 
satisfy 

r 2 pay( ya, A / a ) .  

The function f is insensitive to A / a  for thin strips, but increases exponentially with 
ya, f x (2/7c)i(ya)-teY' for ya % 1. Therefore, as the interaction range of the Green 
function decreases ya increases and the point-vortex circulation required to  bring 
about stabilization by adverse shear increases exponentially. This is the first 
indication that strips of PV may not be easily stabilized in the QGSW model. 

Finally in this section, we discuss the stability of a strip of PV in the upper layer 
of the two-layer quasi-geostrophic model (Phillips 1954). When there is no PV in the 
lower layer of the model the Green function for the motion in the upper layer is given 

where 7 = y (  1 + S);, y is the inverse of the local deformation radius, and S is the ratio 
of the thicknesses of the upper and lower layers. Note that (25) is just a linear 
combination of the Green functions for the 2VD and the QGSW models (it reduces 
to  the 2VD Green function in the limit 6-t oc), and to the QGSW Green function when 
S + O ) .  The stability analysis for a strip with uniform PV is as described in $2 with 
the integrals Yo, Yl, and 92 being the same linear combination of the respective 
integrals in the 2VD and QGSW models. 

Figure 5 plots the maximum dimensionless growth rate Imc?,,, as a function of 
dimensionless shear A ,  with y A  = 1, for several values of S. The most significant 
difference between the results for the two-layer model and the QGSW model (S = 0) 
is that the strip is no longer stabilized by co-operative shear. This is because for large 
r the Green function (25) behaves logarithmically for non-zero 8, rather than falling 
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FIGURE 6. The function f = f/qxa2A versus inverse radius of deformation ya for the QGSW 
model, the two-layer model with 6 = 0.01, 0.05, 0.1, 0.5, 1.0, and the 2VD model. 

off exponentially, and therefore does not satisfy condition (1 1) (and hence a finite A ,  
does not exist). For given A ,  the maximum growth rate decreases with 6, but the 
ratio f of the shear PV to the strip P V  which produces this value of A increases with 
decreasing 6 (see figure 6). The ratio tends to the finite value ( 1  - 6)/6 in the limit of 
yA --f co since the logarithmic part of (25) then dominates. 

5. Hybrid models 
In this section we consider hybrid models which have Green functions which are 

logarithmic for small separations but fall off algebraically for large r .  First, we 
consider the Green function 

where L is some lengthscale (the radius of deformation, say). Like the QGSW Green 
function (23) this function is logarithmic for small separations, r 4 L ,  but behaves 
like L2/47cr2 for r L .  

For (26), the dispersion relation (7) is 

6 = + ~ [ 1 - e e - k L - k [ A + L - ( A 2 + L  2 ) $ I (  1 - A)]2 - [e-kd -e-k(dz-kLz)f 3 2 }+. (27) 

Qualitatively this dispersion relation has the same features as the QGSW one. 
In the limit L/A --f 00 the growth rates are the same as in 2VD, while for L/A --f 0 the 
growth rates are practically negligible. 

In agreement with the analysis of $2, the strip is stabilized for adverse shear 

A 2 1  
or for co-operative shear 

2[6 - ( A 2  + L2)i] 
A < A  - 

- A + L - ( A ~ + L ~ ) ~ ’  

As with the QGSW model, the critical co-operative shear A ,  tends to infinity in the 
2VD limit, L/A+co,  and tends to zero in the limit L/A-0  (note that for L/A 4 1, 
A ,  x -L/A compared with A ,  x - 2e-A/L in the QGSW model). Figure 7 is the contour 
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FIGURE 7. As in figure 3, but with the hybrid Green function (26) .  

"0 1 2  3 4 5 6 7 8 9 10 

P 
FIQURE 8. The stabilizing co-operative shear A ,  versus the algebraic power p of the hybrid 

Green function (28) for a strip with A = L. 

plot of maximum growth rate for given shear A and ratio AIL for the Green function 
(26) .  The growth rate and the magnitude of the critical co-operative shear for given 
AIL are slightly larger than in QGSW (cf. figure 3), but the overall behaviour is very 
similar, with the growth rate decreasing rapidly as AIL + 0. 

The Green function (26) is a member of the general family 

These Green functions are logarithmic for small separations, r 4 L and they fall off 
like l l rp  for large separations, r % L .  

From the analysis of $2 we have that, for all members of this family, the strip can 
be stabilized by adverse shear ; however, only when p > 1 can the strip be stabilized 
by co-operative shear too. Figure 8 shows the variation of A ,  (calculated numerically 
from (12)) with p ,  for AIL = 1 .  This shows that the critical value of stabilizing co- 
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stabilizing co-operative shear A ,  versus AIL for the hybrid Green 

with p = 1.5, 2, 4, 6, and for the QGSW model. 
function 

a lL  

FIQURE 10. Function f = r/gna2A versus a/L for the hybrid Green function (28) with p = 0.5, 
1, 1.5, 2, 4, and for the QGSW model. 

operative shear decreases as the interaction range of the Green function decreases, 
i.e. A ,  -+ 0 as p + a. The variation of A ,  with A/L for several values of p (and for the 
QGSW model) is shown in figure 9. As the interaction range of the Green function 
decreases (either increasing p or decreasing L )  the stabilizing shear A ,  decreases, 
implying a greater range of stability. 

The ratio of shear PV to the strip PV necessary for stability varies with p and L. 
For a circular strip the ratio of the circulations of the point vortex and strip necessary 
for stability ( A  = 1) is given by the function f defined in (18). f has the same 
dependence with Lla as the Green function with r for large r ,  f K (a/L)P, see figure 
10. Hence, as in the QGSW model, a progressively stronger point vortex is necessary 
for stabilization as the interaction range of G(r)  decreases. 
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6. SufEcient conditions for stability 
The first stability theorem of Arnol’d (1965, 1966) holds for all the Green functions 

considered in $54 and 5 (this follows from the Hamiltonian structure of these 
models). For straight strips of piecewise-constant PV the flow is stable if iij& 2 0 for 
all j (& is the PV jump a t  y = yj), while for circular strips the stability condition is 
fi,g, < 0 for all j (see D, $5). These conditions are satisfied by the flows considered 
in $2 when the adverse shear is such that A 2 1, which is the same as the linear 
stability condition for adverse shear derived by the normal-mode analysis in $2. 
Hence the condition for stabilization by adverse shear is equivalent to Arnol’d’s first 
stability theorem. 

Benzi et al. (1982) extended both of Arnol’d’s theorems to the QGSW model, and 
showed that the second theorem becomes d$/dq < -Lk. For parallel flows this is 
equivalent to  iiLg >, d2a/dy2. This condition is never satisfied by a strip of constant 
PV, but it can hold for a strip with finite vorticity gradients. By considering a strip 
with the cross-strip PV distributions of D,  $3,  it can be shown that the co-operative 
shear required to  satisfy the second theorem is much larger (in magnitude) than the 
stabilizing co-operative shear determined in the normal-mode analysis of $ 2. Hence 
the stabilizing co-operative A ,  is not related to Arnol’d’s second stability theorem. 

7. Nonlinearity 
The nonlinear evolution of the linearly unstable flows considered in the previous 

sections is now examined. We use the method of ‘contour dynamics’ to perform 
numerical calculations of the evolution of strips of uniform PV. This numerical 
technique is designed for piecewise-constant (potential) vorticity distributions, and 
can be used for any two-dimensional or multi-layer model with a Green function G(r) .  
For full details of this method and its extension ‘contour surgery’, see Dritschel 
( 1989 a). 

The contour-dynamics algorithm implemented uses numerical quadrature to 
evaluate the part of the contour integral between nodes. This method is 
computationally faster than using explicit evaluation of the integral (as in Dritschel 
1989a), but numerical instability occurs when nodes on different contours (or 
different sections of the same contour) approach each other (Dritschel 1986). Hence 
this method is inaccurate when small scales develop in the flow. Because of this 
inaccuracy the calculations in this section have been terminated when small scales 
develop. 

To examine the nonlinear evolution of initially small, unstable disturbances on a 
straight strip of vorticity in 2VD, D used the periodic version of contour dynamics. 
Unfortunately, although the periodic counterpart of a general Green function G ( r )  
can be determined from the method of images, i t  is not known in closed form, and 
so the evolution of a straight strip would require unjustified computational effort. As 
it has been shown that the linear stability of a thin circular strip is essentially the 
same as that of a straight strip, one might expect the nonlinear evolution to be 
similar too, and for this we can use the original Green function at much reduced 
computational effort. Indeed, repeating the straight-strip calculations of D but in 
circular geometry, we observe very little difference (compare figure 11 with figure 3 
of D). 

We now examine the nonlinear evolution for a strip of PV in the QGSW model. The 
evolution of circular strips of uniform PV with yd = 1 was calculated for several 
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FIGURE 11. A contour-dynamics calculation of the instability of a circular strip of vorticity with 
no shear (A = 0) in the 2VD model (a = 1, A = 0.05, m = 16). Radius versus angle is plotted for two 
periods of the disturbance. Time is shown on the plots. 
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0.08 
0.08 
0.10 
0.10 
0.11 
0.11 
0.11 
0.11 
0.11 
0.11 
0.12 
0.12 
0.12 
0.12 
0.15 
0.15 

m 

8 
7 

11 
16 
15 
16 
14 
16 
17 
17 
17 
18 
18 
19 
19 
21 
23 
23 
19 
21 

Im bS 
0.009 15 
0.03560 
0.067 49 
0.08561 
0.08092 
0.077 31 
0.072 74 
0.067 40 
0.061 28 
0.05844 
0.05348 
0.052 11 
0.05072 
0.047 44 
0.040 80 
0.033 67 
0.02948 
0.028 11 
0.02674 
0.02021 

E 

3 x 10-6 
9 x lo-& 
4 x 10-6 
i x 10-4 
1 x 10-4 
1 x 10-4 
2 x 10-4 

1 x 10-4 
1 x 10-4 

2 x 10-4 
1 x 10-4 
i x 10-4 
2 x 10-4 
2 x 10-4 
9 x 10-4 
1 x 10-4 
2 x 10-4 

6 x 

6 x lo-' 

1 x 10-3 

TABLE 1. Strip width A and wavenumber m for calculations performed in the QGSW model. The 
radius of deformation L, is equal to A in all calculations. E is the difference between the maximum 
growth rate for a straight and a circular strip E = IIm 8,-Im8,1, cf. figure 1. 

different values of A .  For each value of A ,  the inner and outer edges of a thin circular 
strip of uniform vorticity are disturbed by the most unstable eigenmode. The inner 
radius a is set at unity, the width of the strip A ( A )  is chosen so that the azimuthal 
wavenumber m corresponding to the most unstable mode is not too large, and the 
amplitude of the disturbance is 0.054. The values of A and m used in each calculation 
are given in table 1. When yA = 1, the radius of deformation L,  of the Green function 
takes the same value as the strip width. 
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10 20 

RQURE 12. Final configuration of contour-dynamical calculations of the instability of a circular 
strip of PV with yA = 1 in the QGSW model. (a) No shear A = 0, ( b )  A = 0.15, (c) A = 0.30, and 
(d )  A = 0.45. Refer to table 1 for further details. 

For adverse shear, the behaviour is qualitatively the same as 2VD, compare figure 
12 with figures 3-9 of D. As A increases towards unity there are four different 
regimes. For A less than 0.10 (approximately), the strip goes unstable and rolls up 
into a string of vortices. The second regime, in which the shear overcomes the initial 
roll-up and extends the vortices, occurs when 0.10 < A < 0.28. For 0.28 < A < 0.44, 
either vortices begin to form but are then torn in two, or thin filaments are shed from 
the interfaces. There is no disruption to the strip for adverse shear greater than 0.44 
-this is substantially less than the value of unity necessary for linear stability. The 
corresponding regimes in 2VD are A < 0.21, 0.21 < A < 0.45, 0.45 < A < 0.65, and 
0.65 < A .  For a more detailed description of the evolution in each regime (and 
numerical calculations) in 2VD, consult D. Although the values of A for each regime 
in QGSW are smaller than the corresponding 2VD values, the strength of the point 
vortex required for the same value of shear is much larger (see below). 

For small values of co-operative shear the evolution remains similar to that in the 
fist regime, but as the magnitude of the co-operative shear increases, the evolution 
becomes quite different. As A approaches A ,  x - 1.1639, the maximum growth rate 
decreases, and according to linear theory the strip should stabilize. This does not 
happen, as can be seen from figure 13 for A = - 1.2. A clear sign here of a nonlinear 
instability mechanism is the local reduction in disturbance lengthscale before the 
pinching off takes place. So, although co-operative shear can suppress linear 
instabilities it cannot prevent nonlinear disruption. 

As discussed previously (Dritschel 1989a, b ) ,  the adverse shear imposed on 
filaments by coherent vortices of like-signed vorticity is a major factor in the quasi- 
passive nature and lack of roll-up of filaments in the 2VD model. The stability results 
from the previous sections suggest that filaments in other two-dimensional flows 
(with different Green functions) should also generally behave quasi-passively . 
However, i t  is a crucial fact that the magnitude of the stabilizing shear vorticity 
increases as the interaction range decreases, so indeed there is likely to be more roll- 
up of filaments for Green functions with short interaction ranges. To demonstrate 
this, we consider the process of vortex merger. We are motivated in this choice by 
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FIQURE 13. As in figure 11 ,  but for a strip in the QGSW model (yd = 1)  with co-operative shear 
A = - 1.2. The strip is initially perturbed by a six-fold random disturbance with maximum 
amplitude 0.05d. 

the fact that  vortex merger is fundamental to the behaviour of geophysical flows. It 
is here that filaments are likely to be produced and then stabilized or not by the 
differential flow about the merged vortices. A series of calculations of the merger of 
two identical circular vortices with uniform PV were performed for several different 
Green functions. Figure 14 shows the final configurations obtained. In  all cases the 
centroids of the vortices were initially two and a half radii apart, and the radius of 
deformation of the Green function is equal to the radii of the vortices. I n  the 2VD 
model, there is no sign of roll-up of the filaments shed during the coalescence of the 
vortices (figure 14a). For other models, though, as the interaction range decreases 
(e.g. p increases in the Green function (28)), the central vortex no longer produces 
enough shear to  stabilize the filaments and the ends roll-up into small vortices (figure 
14b-h). This has also been observed in the QGSW and two-layer models by Polvani, 
Zabusky & Flier1 (1989). 

8. Conclusions 
In any two-dimensional model with a Green function for which the velocity on the 

edges of a strip of PV is finite, it  has been shown that all linear instabilities can be 
prevented by imposing shear which reverses the shear across the strip. If additionally 
the Green function has a sufficiently short interaction range, the strip can also be 
stabilized (linearly) by imposing shear which acts in the same direction as the shear 
due to the strip. For thin strips of PV these stability results are essentially 
independent of any curvature effects. Both the linear growth rate of the disturbances 
and the magnitude of the shear necessary to stabilize the strip, however, are very 
sensitive to  the interaction range of the Green function. Nonlinear calculations have 
shown that there will be no disruption of the strip for significantly less adverse shear 
than predicted by linear theory, even more so the shorter the interaction range. On 
the other hand, the calculations have shown that co-operative shear is not effective 
in preventing nonlinear disruption. 
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FIQURE 14. Final configuration of the merger of two identical circular vortices initially two and a 
half radii apart. Each vortex has potential vorticity 271 and the time is shown on each plot. (a) 2VD 
model, ( b )  hybrid Green function (28) with p = 0.25, (c) p = 0.5, (d )  p = 1.0, (e) p = 1.5, (f) p = 
2.0, (9)  QGSW model, and (h)  two-layer model with S = 0.2. 

Polvani et al. (1989) and Waugh (1991) have observed that there is a suppression 
of filamentation in the QGSW model when the radii of the vortices are greater than 
a few times the radius of deformation (see also Dritschel 1989a, 96). This together 
with the above result that filaments have an increased propensity to roll-up into 
small vortices as the interaction range decreases, gives insight into the variation of 
two-dimensional flows with the PV inversion operator of the model. As stated in the 
Introduction, filaments are a common feature of 2VD flows and they are seldom 
observed to roll-up into small vortices. The above results suggest, however, that 
vortex interact'ions in models with a shorter interaction range will generate fewer 
filaments, and those filaments produced will tend to roll up into vortices. Hence 
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quasi-passive filament dynamics is not likely to typify models with short interaction 
ranges. 
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Appendix A. Condition for stabilizing co-operative shear 

k + 0, the stabilizing co-operative shear (lob) is 
As the integrals Y1(k) and 92(k )  given by ( 5 )  take their maximum value in the limit 

lim {91(lc) + Y2(k, A ) } .  
1 

A c = l - -  
$O(’) k-0 

For A ,  to exist lim Y1(k) = 2 lim 
k+O k+O 

m 

= 2 r G ( z )  d z f 2  lim [ G(z) cos kzdz (A 1) 
J o  k+O J 8  

must be finite. The first integral exists if G(r) is less singular than l / r  a t  r = 0, since 
~ ~ z - P d z  is defined only for p < 1. Assuming that G(r )  cc r-* (q > 0) for large r ,  and 
that 6 is such that k6 < 1, we may write the second integral as 

m 00 m 

2 lim [ x-* cos kx dz = 2 [ z-* dz + 2 lim [ [ - ikzx2-* + O( k4x4-Q) cos kz] dz. 
k+O J O  Ja k-0 J 8  

The right-hand side of this expression exists only if q > 1, and then the second term 
vanishes. 

Hence (A 1 )  is finite if G ( r )  is less singular than 1/r as r + 0 and decays faster than 
l / r  as r +  m, and then 

lim Y1(k) = 2 G(x) dx. 
k+O lom 

Similarly it can be shown that limk+09z(k,A) exists for G(r) satisfying these 
conditions. We may then write the stabilizing co-operative shear as 

Note that since G(z) - G( (z2 + A 2 ) i )  vanishes as x -+ 00, the integral Yo given by (5a )  
will exist if s:G(z)dz exists. As stated above, this implies that G ( r )  must be less 
singular than l / r  as T + 0. 

Appendix B. Background potential vorticity 8q and point-vortex strength 
8r 

In this Appendix we calculate the uniform background potential vorticity 6q and 
the increment point-vortex strength Sr, so that the shear at the edges of a circular 
strip of PV is comparable with that in the straight case, i.e. so that the constraints 
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(17) are satisfied. The total angular velocity due the circular strip, uniform 
background PV, and central point vortex is Q = Qs+Qb+Qv,  where 

Q,(r) = q(F(a> r ) - F ( h  r ) )  = qas(r),  

Q,(r) = - dq9=(R, r )  = dqa,(r) 

(here R is some radius much larger than any other lengbhscale in the flow) and 

QJr )  = ( f + d r )  G’ ( r ) / r  ( r+dr)av( r ) .  

The values of dq and d f  are then determined to satisfy (17a, b ) .  Defining p2 = 
a,(b)fa,(a),  etc., the result is 

Appendix C. Dispersion relation for a thin circular strip of potential 
vorticity 

The form of the dispersion relation (19), for a circular strip of uniform potential 
vorticity, in the limit of a thin strip ( A  = b-a .g a )  is now determined. I n  this limit 
the integral X,(a,b) (cf. (16)) may be written as 

X,(a,b) = m G([A2+2a2(1-ccosq5)]~)cosmq5dq5. 

For the Green functions under consideration, the significant contribution to this 
integral comes from small 9, roughly q5 < A/a.  Therefore we may use 2( 1 - cos 4) z 

II, 
ax 

q52, so 

X,(a,b) = k ~ - ~ , G ( ( A 2 + ~ 2 ) i ) ~ ~ s k z d ~ ,  

where we have let x = aq5 and k = m/a. In  the limit of a thin strip, a +. co for fixed A ,  
and so the integration is from - co to co, and the above integral is the same as ( 5 c ) ,  
i.e. 

in the limit of a thin circular strip. Similarly it can be shown that X,(b, a)  = kY2(k ,  
A )  and X,(a,a) = X m ( b , b )  = kYl(k), and ma = -kYo(l-A). Thus (19) reduces to 

.Xm(a, b )  = kY2(k, 4 

6 = f k{ [Yl - Yo( 1 - A)]2 - 9 ;>t, 
and this is exactly the same dispersion relation as for a straight strip, equation (7). 

Appendix D. Integrals for QGSW model 
I n  this Appendix we calculate various integrals used in $2, for the QGSW model. 

I n  all cases the integrals reduce to those for 2VD when y --f 0. The integrals ( 5 ) ,  used 
in the analysis for a straight strip of uniform vorticity, are 

1 
Yo = --(l-e-yA), 

2Y 
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and Y2 = - 1 e-A(k2+y2)i , 

while the integrals used in (18) are 

where I, and K, are the modified Bessel functions of the mth order. The functions 
of r used in Appendix C to calculate the angular velocity due to a circular strip of 
potential vorticity, background potential vorticity, and a point vortex are 
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